skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Cleveland Stout, R."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. SUMMARY Fossil corals are commonly used to reconstruct Last Interglacial (∼125 ka, LIG) sea level. Sea level reconstructions assume the water depth at which the coral lived, called the ‘relative water depth’. However, relative water depth varies in time and space due to coral reef growth in response to relative sea level (RSL) changes. RSL changes can also erode coral reefs, exposing older reef surfaces with different relative water depths. We use a simplified numerical model of coral evolution to investigate how sea level history systematically influences the preservation of corals in the Bahamas and western Australia, regions which house >100 LIG coral fossils. We construct global ice histories spanning the uncertainty of LIG global mean sea level (GMSL) and predict RSL with a glacial isostatic adjustment model. We then simulate coral evolution since 132 ka. We show that preserved elevations and relative water depths of modelled LIG corals are sensitive to the magnitude, timing and number of GMSL highstand(s). In our simulations, the influence of coral growth and erosion (i.e. the ‘growth effect’) can have an impact on RSL reconstructions that is comparable to glacial isostatic adjustment. Thus, without explicitly accounting for the growth effect, additional uncertainty is introduced into sea level reconstructions. Our results suggest the growth effect is most pronounced in western Australia due to Holocene erosion, but also plays a role in the Bahamas, where LIG RSL rose rapidly due to the collapsing peripheral bulge associated with Laurentide Ice Sheet retreat. Despite the coral model's simplicity, our study highlights the utility of process-based RSL reconstructions. 
    more » « less